

	2.1 . Coue. 17.	<u>vil</u> 203	11									Ľ		
F	Reg. No:													
	SIDDH		H INS	STITU	ТЕ О	FEN	GINE	ERIN	IG & '	ГЕСН	INOI		PUTTU	R
				,	12 0	(AU	TON	OMOL	JS)	1201				
	B.1	ech l	II Yea	ar I Se	emest	ter Su	apple	ment	ary E	xami	natio	ns July	-2022	
				DES	SIGN	OF M	IACH	INE F	ELEM	ENT	S-I			
					(N	Aecha	nical l	Engine	ering)				
Т	ime: 3 hours												Max. N	Aarks: 60
				(Ans	swer a	ll Five	e Units	s 5 x 1	2 = 6	0 Mar	ks)			
							UNI	T-I						
1	a How do y	vou cla	ssify	materi	als for	engir	neering	g use?					L1	6 M
	b What are	the ge	eneral	design	o consi	iderati	on she	ould b	e follo	wed w	while	designin	g L1	6M
	amachine	eleme	ent											
							0	R						
2	The load on	a bolt	cons	ists of	an ax	ial pu	ll of 1	l0 kN	togeth	ner wi	th a t	ransvers	e L2	12 M
shear force of 5 kN. Find the diameter of bolt required according to 1. Maximum						n								
	principal str	ess the	eory;	2.Max	imum	shea	r stres	s theo	ory; 3	.Maxi	mum	principa	ıl	
	strain theory	,4.Maz	x1mur	n stran	n ener	gy the	ory; a	nd 5.N	/lax1m	um di	stortic	on energy	У	
	theory.													
_							UNI	<u>[-]]</u>		_		_		
3	a What are Stress – T	the flu	ictuat	ting str dal cur	ess, re	epeate	d stres	ss and	rever	sed st	ress?	Draw the	e L3	6M
	b Determine	e the	diame	eter of	a cir	cular	rod n	nade d	of duc	tile n	nateria	al with	a L2	6M
	fatigue str	ength	(com	plete r	eversa	l), σe	=265 1	MPa a	nd ten	sile vi	ield st	rength o	f	0112
	350 MPa.	The n	nemb	er is su	bjecte	ed to a	ı varyi	ng axi	al loa	d fron	n W n	$\sin = -30$	0	
	KN to W	max	= 70	0 KN	and h	as a s	stress	conce	ntratic	n fact	tor is	1.8. Us	e	
	factor of s	afety	as 2.											
							0	R						
4	A machine c	ompor	nent i	s subje	ected t	o a fl	exural	stress	whic	h fluc	tuates	between	1 L1	12 M
	+ 300 MN/r	n2 and	1 – 1	50 MN	V/m2.	Deter	mine	the va	alue o	f mini	imum	ultimate	9	
	strength acco	ording	to 1.	Gerbe	r rela	tion; 2	2. Mo	dified	Good	man r	elatio	n; and 3	•	
	Soderberg re	elation	. Tak	te yiel	d stre	ngth	= 0.55	5 Ulti	mate	streng	th; E	ndurance	3	
	strength $= 0$.	5 Ultır	nate s	strengtl	n; and	actor	of safe	ety = 2	2.					
							UNI	'-III						
5	a Two macl	ine pa	arts ar	e faste	ned to	gethe	r tight	ly by 1	neans	of a 2	4 mm	tap bolt	i. L2	6M
	If the load	l tendi	ng to	separa	te thes	se part	s is ne	eglecte	ed, fino	the s	tress	that is se	я Я	
	up in the l	ouded	une 1	mual ti	ignten	ing. പ	motor	of 1	00	n ond	l tha	blow of	τo	<i>C</i> M
	J A lever I	oaued	sale	iy valv	e nas	a ula	ameter	UI I	oo mi	iii alio	i ine	UIUW OI		UIVI

pressure is1.6 N/mm2. The fulcrum of the lever is screwed into the cast iron body of the cover. Find the diameter of the threaded part of the fulcrum if the permissible tensile stress is limited to 50 MPa and the leverage ratio is 8.

R19

Q.P. Code: 19ME0311

OR

6 Fig. shows a solid forged bracket to carry a vertical load of 13.5 kN applied L3 12 M through the centre of hole. The square flange is secured to the flat side of a vertical stanchion through four bolts. Calculate suitable diameter D and d for the arms of the bracket, if the permissible stresses are 110 MPa in tension and 65 MPa in shear. Estimate also the tensile load on each top bolt and the maximum shearing force on each bolt.

UNIT-IV

7	a What are the applications of a cottered joint?	L1	6M
	b A knuckle joint is required to withstand a tensile load of 25 kN. Design the	L6	6M
	joint if the permissible stresses are : $\sigma t= 56$ MPa ; $\tau = 40$ MPa and $\sigma c= 70$		
	MPa.		
	OR		
8	Design a sleeve and cotter joint to resist a tensile load of 60 kN. All parts of the	L6	12 M
	joint are made of the same material with the following allowable stresses: Tensile		
	stress = 60 MPa; shear stress = 70 MPa; and compressive stress = 125 MPa.		
	UNIT-V		
9	a What is a key? State its function with neat sketch.	L1	6M
	b Design the rectangular key for a shaft of 50 mm diameter. The shearing and	L6	6M
	crushing stresses for the key material are 42 MPa and 70 MPa.		
	OR		
10	a Discuss the function of a coupling. Give at least three practical applications.	L2	6M
	b Design and make a neat dimensioned sketch of a muff coupling which is used	L6	6M
	to connect two steel shafts transmitting 40 kW at 350 r.p.m. The material for		
	the shafts and key is plain carbon steel for which allowable shear and crushing		
	stresses may be taken as 40 MPa and 80 MPa respectively. The material for		
	the muff is cast iron for which the allowable shear stress may be assumed as		
	15 MPa		